УДК 594.124:591.471.24:575.21

Е. А. Наум, аспирант

Одесский национальный университет имени И. И. Мечникова, кафедра гидробиологии и общей экологии,

ул. Дворянская, 2, Одесса, 65082, Украина; e-mail: naum elizaveta@mail.ru

ВЕРТИКАЛЬНОЕ РАСПРЕДЕЛЕНИЕ МИДИИ MYTILUS GALLOPROVINCIALIS (LAMARCK, 1819) РАЗНЫХ ФЕНОТИПИЧЕСКИХ ГРУПП ОБРАСТАНИЙ ОДЕССКОГО ПОБЕРЕЖЬЯ

Мидий исследовали в составе обрастаний в прибрежной зоне Одесского залива на глубине 1, 3,5 и 6 м. По характеру фиолетовой пигментации створок у мидий различали 3 фенотипические группы: F_a — пигмент отсутствует, F_b — пигмент окрашивает все створки, F_c — пигмент покрывает раковину в виде радиальных полос. Среди самых мелких моллюсков, представленных только на глубине 6 м, доминировали мидии фенотипа F_b (60 %); вдвое меньше мидий фенотипа F_a (30 %) и 10% — мидии фенотипа F_c . На глубине 6 м более половины мидий (55 %) приходилось на фенотип F_b . На глубине 1,0 и 3,5 м наблюдается дефицит гетерозигот, а на 6-метровой глубине — их избыток.

Ключевые слова: *Mytilus galloprovincialis*, фенотипические группы, глубина, Чёрное море.

Мидия *Mytilus galloprovincialis* широко распространена в северо-западной части Чёрного моря, является активным фильтратором морской воды, важным компонентом разных зооценозов. Моллюск является объектом промысла и марикультуры [3].

В связи с условиями существования выделялось несколько форм черноморской мидии. Сохранило значение выделение скаловой и иловой форм, а также их различие по окраске [1]. Скаловая мидия обитает в прибрежной зоне на каменистых субстратах. Иловая форма образует банки на больших глубинах, где она доминирует в макрозообентосе. Считается, что фиолетовая окраска раковины преобладает у скаловой, коричневая — у иловой мидии [2].

Внешний органический слой раковины мидий (периостракум) – коричневый, однако основным источником вариаций окраски является цвет наружного призматического слоя раковины, обусловленный содержанием фиолетового пигмента. Поэтому, по особенностям его распределения во внешнем призматическом слое, мидий делят на три фенотипические группы: F_a — в призматическом слое фиолетовый пигмент отсутствует; F_b — пигмент окрашивает весь призматический слой; F_c — пигмент локализован в виде радиальных полос, чередующихся с непигментированными зонами. Первые две формы считают гомозиготными, последнюю — гетерозиготной [5].

© E. A. Haym, 2015

Цель работы – исследовать распределение мидий различных фенотипических групп по глубинам у Одесского побережья.

Материалы и методы исследования

Материалом для работы послужили мидии, собранные в мае 2012 г. на двух станциях (рис. 1). Пробы собирали при помощи рамки площадью 0.01 м².

На ст. 1, расположенной на открытой акватории пляжа «Ланжерон», материал собран из обрастаний камней на глубине 3,5 м. Собрано 79 экземпляров мидий.

Ст. 2 расположена в районе гидробиологической станции (ГБС) Одесского национального университета имени И. И. Мечникова. Пробы собирали на глубинах 1 м (с волнолома) и 6 м (обрастание камней). Собрано, соответственно, 192 и 188 экземпляров.

Рис. 1. Расположение станций отбора проб
— места сбора проб

Собранных животных замораживали в холодильной камере при температуре от -18 °C до -25 °C. Измерения длины раковин мидий проводили с помощью штангенциркуля с точностью до $0,1\,$ мм.

Для установления характера распределения фиолетового пигмента и, следовательно, фенотипа моллюсков створки мидий помещали в 10–15 %-ный раствор щёлочи на несколько суток, после чего периостракум легко снимался мягкой щёткой.

Всего собрано и проанализировано 459 экземпляров мидий, которые были разбиты на размерные группы с интервалом 10 мм.

Индекс дефицита гетерозигот (D) вычисляли по уравнению:

$$D = (H_o - H_c)/H_c,$$

где H_0 — число гетерозигот, обнаруженное в популяции; $H_{\rm C}$ — число гетерозигот, ожидаемое по уравнению Харди-Вайнберга. Положительное значение D означает дефицит гетерозигот, а отрицательное — их избыток. Соответствие фактических частот фенотипов теоретически ожидаемым частотам определяли по критерию $\chi^2[4]$.

Количественные данные обрабатывались с помощью общепринятых методов вариационной статистики с вычислением средней арифметической (М) и стандартной средней арифметической погрешности (m).

Результаты исследования и обсуждение

Как видно из табл. 1, на ст. 1 представлены мидии трёх размерных групп. Около 52 % от общего количества моллюсков в пробе относятся к размерному классу 20–29 мм, на остальные два класса приходится по 24 %.

Таблица 1 Количественная и размерная характеристика мидий, собранных на пляже «Ланжерон»

Размерные классы, мм	Общее количество, экз.	Фенотип	Изучаемые параметры			
			Количество особей		Средняя длина	
			экз.	%	раковин, мм (М±m)	
10-19	19	F_a	3	16	12,9±0,39	
		F_{b}	7	37	16,8±0,50	
		F_c	9	47	17,0±0,51	
20-29	41	F_a	7	18	26,0±0,78	
		F_{b}	17	41	25,3±0,76	
		F_c	17	41	26,7±0,80	
30-39	19	F_a	4	21	34,1±1,02	
		F_{b}	4	21	32,7±0,98	
		F_c	11	58	33,2±0,99	

Следует отметить, что во всех размерных группах большинство моллюсков относятся к фенотипам типа F_b и F_c .

Длина раковины самых мелких мидий колебалась в диапазоне 11,0–19,2 мм, у второй и третьей групп от 20,6–29,8 мм и 30,3–36,7 мм, соответственно.

В табл. 2 приведена характеристика мидий, собранных на ст. 2.

Таблица 2 Количественная и размерная характеристика мидий, собранных в районе ГБС

	0.5		Изучаемые параметры			
Размерные классы, мм	Общее количество,	Фенотип	Колич	Количество особей		
	экз.		экз.	%	раковин, мм (M±m)	
1	2	3	4	5	6	
		E.	_	_		
		F_a	- 6	30	8,2 ± 0,1	
0-9	_	$\frac{1}{10}$ F_b	_	_		
0-9	10		6	60	9,6 ± 0,3	
		F_{c}	_	_	_	
			- 1 -	30 - 60 - 10	9,6	
		F_{a}	_		_	
			5	15	16,6 ± 0,5	
	16	Γ .	8	50	$18,0 \pm 0,5$	
10-19	34		22	65	15,8 ± 0,5	
			8 7	50	16,8 ± 0,5	
			7	20	25,6 ± 0,8	
	68 52	F_{a}	20	29	25,5 ± 0,8	
20-29			20	39	$24,4 \pm 0,7$	
		F	16	24	25,1 ± 0,7	
		$F_{_b}$	21	40	±	
		F_c	32	47	25,1 ± 0,7	
			11	21	24,9 ± 0,7	
30-39	40 48	F_a	_		_	
			12	25	36,5 <u>+</u> 1,1	
		F_{b}	28	70	35,2 ± 1,1	
			26	54	36,6 ± 1,1	
		F_c	12	30	36,8 ± 1,2	
			10	21	34,7 ± 1,0	

Окончание таблицы 2					
1	2	3	4	5	6
40-49	40 36	F_{a}	12 6	30 17	$\frac{43,3 \pm 1,3}{47,8 \pm 1,4}$
		$F_{_b}$	12 26	$\frac{30}{72}$	$\frac{42,1 \pm 1,2}{44,8 \pm 1,3}$
		F_{c}	$\frac{16}{4}$	40 11 –	$\frac{46,4 \pm 1,3}{44,6 \pm 1,3}$
50-59	12 5	F_a F_b F_c	<u>-</u> 1	<u>-</u> 20	<u>-</u> 58,2
			$\frac{12}{2}$	100 40	$\frac{54,4 \pm 1,6}{51,9 \pm 1,6}$
			- 2 - -	- 40 -	- 55,8 <u>+</u> 1,64
60-69	$\frac{4}{2}$	F_a	<u>-</u>	_ _ _ _	<u>-</u> -
		$\frac{4}{2}$ F_b	<u>-</u> 1	<u>-</u> 50	<u>-</u> 65,8
			$\frac{4}{1}$	100 50	$\frac{64,8 \pm 1,9}{60,0}$

Примечание: над чертой – мидии, собранные на глубине 1 м; под чертой – мидии, собранные на глубине 6 м.

В собранном материале представлены мидии размером от 8,0 мм до 65,8 мм (глубина 6 м). Размерная группа 20–29 мм оказалась самой многочисленной: на глубине 1 м – 68 экз., или 36 % общего количества; на 6-метровой глубине – 52 экз., или 28 %.

Наличие большого количества мелких мидий можно объяснить тем, что основу их численности составляли моллюски осеннего оседания 2011 г.

Говоря о распределении мидий разных фенотипов по глубинам, отметим, что на глубине 1 м в обрастаниях пирсов отсутствовали самые мелкие моллюски.

В размерном классе 10–19 мм были представлены в небольшом количестве мидии только фенотипов F_b и F_c . Мидии фенотипа F_a отсутствовали также в размерных классах 30–39, 50–59 и 60–69 мм. Таким образом, моллюски всех фенотипов обнаружены только в размерных классах 20–29 и 40–49 мм.

В размерных классах 20–29 и 40–49 мм относительная представленность фенотипов весьма сходна: мидии фенотипа F_a – 29 и 30 % общего количества моллюсков данного класса, мидии фенотипа F_b – 24 и 30 %, мидии фенотипа F_c – 47 и 40 %, соответственно.

Как видно из табл. 2, наиболее крупные размерные классы представлены небольшим количеством мидий. Так, в классе 50–59 мм на глубине 1 м отмечено 12 экземпляров мидий только фенотипа F_b . Кроме того, были найдены 4 экземпляра фенотипа F_c из наибольшего, 60–69 мм, размерного класса.

Изучение распределения различных фенотипов мидий из сообщества обрастаний на глубинах 3,5 и 6 м показало следующее.

На глубине 3,5 м представлены мидии трёх размерных классов: 10–19, 20–29 и 30–39 мм. Их сравнение с данными с глубины 6 м показало, что в размерном классе 10–19 мм у мидий фенотипа F_a относительное значение численности практически одинаково – 16 и 15 %. На глубине 6 м мидии фенотипа F_b образуют более половины численности моллюска – 65 %, тогда как на глубине 3,5 м – лишь 37 %. Мидии фенотипа F_c , наоборот, доминируют на глубине 3,5 м – 47 %, а на глубине 6м – только 20 %.

В размерном классе 30—35 мм роль мидии фенотипа F_a в численности также примерно одинакова на обоих горизонтах глубины, но в классе 20—29 мм на глубине 6 м его значение вдвое больше, чем на глубине 3,5 м. Количество мидий фенотипа F_c на глубине 3,5 м во всех размерных группах в 2—3 раза больше, чем на глубине 6 м.

Среди самых мелких моллюсков, которые были найдены на глубине 6 м доминируют мидии фенотипа F_b – 60 %; вдвое меньше мидий фенотипа F_a – 30 % и лишь 10 % приходится на мидии с фенотипом F_c .

В крупных размерных классах доминируют мидии фенотипа F_b : 40–72 % (табл. 2).

Количественная характеристика мидий различных фенотипических групп по глубинам представлена в табл. 3.

Таблица 3 Количественная представленность и индекс дефицита гетерозигот (*D*) мидий различных фенотипических групп по глубинам

Глубины, м	Фенотипы	Количество мидий		D
		3к3.	%	D
1,0	F_{a}	44	23	0,16
	F_{b}	76	40	
	F_c	72	37	
3,5	F_a	14	18	0,21
	F_{b}	28	35	
	F_c	37	47	
6,0	F_a	47	25	
	F_{b}	104	55	-0,10
	F_c	37	20	

Как видно из табл. 3, мидии фенотипа F_a находятся в меньшинстве практически на всех горизонтах глубин, на их долю приходится, соответственно, 23, 18 и 25 % общей численности животных. Такое распределение можно объяснить предпочтением мидиями первой группы бо́льших глубин, на что имеются и указания в литературе [5].

На глубине 1 м количество мидий фенотипов F_b и F_c практически одинаково — 40 и 37 %. На глубине 3,5 м количество мидий данных фенотипов отличается незначительно — 35 и 47 %. Мидии фенотипа F_b , наоборот, доминируют на глубине 6 м, на их долю приходится более половины общей численности животных — 55 %. Анализ соответствия фактических частот фенотипов с теоретическими значениями, рассчитанными по соотношению Харди-Вайнберга с использованием критерия χ^2 показал, что на глубинах 1 и 3,5 м полученные значения оказались статистически недостоверны.

На глубине 1,0 и 3,5 м наблюдается дефицит гетерозигот, а на 6-метровой глубине – их избыток.

Выводы

- 1. Среди самых мелких моллюсков, обнаруженных только на глубине 6 м, резко доминировали мидии фенотипа F_b-60 %, вдвое меньше мидий фенотипа F_a-30 % и лишь 10% общего количества моллюсков приходилось на мидии фенотипа F_c . В крупных размерных классах на глубине 1 м доминировали мидии фенотипа F_b до 100%.
- 2. Мидии фенотипа F_a составляют меньшую часть моллюсков практически на всех исследованных глубинах (1, 3,5 и 6 м), соответственно, 23, 18 и 25 % их общего количества.
- 3. На глубине 6 м доминировали мидии фенотипа F_b (55 %).
- 4. Дефицит гетерозигот наблюдается на глубине 1 и 3,5 м, а на 6-метровой глубине их избыток.

Список использованной литературы

- 1. *Булатов К. В.* Хромосомный полиморфизм черноморской мидии (*Mytilus galloprovincialis* Lam.) / К. В. Булатов // Моллюски, систематика, экология, и закономерности распространения. Л., 1983. Сб. 7. С. 71–72.
- Митилиды Чёрного моря / В. Е. Заика, Н. А. Валовая, А. С. Повчун, Н. А. Ревков К.: Наук. думка, 1990. – 208 с.
- 3. *Супрунович А. В.* Культивируемые беспозвоночные. Пищевые беспозвоночные: мидии, устрицы, гребешки, раки, креветки / А. В. Супрунович, Ю. Н. Макаров. К.: Наук. думка, 1990. 262 с.
- 4. *Рокитский П. Ф.* Введение в статистическую генетику / П. Ф. Рокитский. Минск: Высшая школа, 1974. 445 с.
- Шурова Н. М. Анализ фенотипичесой структуры поселений мидий Чёрного моря по окраске наружного призматического слоя их раковин / Н. М. Шурова, В. Н. Золотарёв // Мор. экол. журн. – 2008. – 7, № 4. – С. 88–97

Стаття надійшла 22.02.2015

€. O. Haym

Одеський національний університет імені І. І. Мечникова, кафедра гідробіології та загальної екології, вул. Дворянська, 2, Одеса, 65082, Україна

ВЕРТИКАЛЬНИЙ РОЗПОДІЛ МІДІЇ MYTILUS GALLOPROVINCIALIS (LAMARCK, 1819) PIЗНИХ ФЕНОТИПІЧНИХ ГРУП ОБРОСТАННЯ ОДЕСЬКОГО УЗБЕРЕЖЖЯ

Резюме

Мідій досліджували у складі обростань в прибережній зоні Одеської затоки на глибинах 1, 3,5 і 6 м. За характером фіолетової пігментації раковин у мідій розрізняли 3 фенотипічні групи: F_a — пігмент відсутній, F_b — пігмент забарвлює всю раковину, F_c — пігмент покриває раковину у вигляді радіальних смуг. Серед найдрібніших молюсків, представлених лише на глибині 6 м, домінували мідії фенотипу F_b (60%); вдвічі менше мідій фенотипу F_a (30%) і 10% складали мідії фенотипу F_c . На глибині 6 м більше половини мідій (55%) припадало на фенотип F_b . На глибині 1,0 і 3,5 м спостерігається дефіцит гетерозигот, а на 6-метровій глибині — їх надлишок.

Ключові слова: *Mytilus galloprovincialis*, фенотипові групи, глибина, Чорне море.

E. O. Naum

Odesa National Mechnykov University, Departament of Hydrobiology and General Ecology 2, Dvoryanska str., Odesa, 65082, Ukraine

VERTICAL DISTRIBUTION OF MUSSEL MYTILUS GALLOPROVINCIALIS (LAMARCK, 1819) OF DIFFERENT PHENOTYPIC GROUPS FOULING THE DEPTH OF ODESA COAST

Summary

Mussels were investigated as a part of fouling in the coastal zone of the Odesa Bay at the depth of 1, 3.5 and 6 meters. By the nature of wings purple pigmentation mussels are differentiated into 3 phenotypic groups: F_a – pigment is absent, F_b – pigment colors all shell, F_c – pigment covers the shell in the form of radial strips. The smallest mussels can be found just at the dept of 6 m, mussels of phenotype F_b dominated (60 %); half mussels of phenotype F_a (30 %) and there are only 10 % constitute the mussels of phenotype F_c . There are more than 55 % of mussels of phenotype F_b at the dept of 6 m. At the dept of 1 and 3,5 m there were deficient of heterozygote, a depth of 6 m they were abundant.

Key words: *Mytilus galloprovincialis*, phenotypic groups, dept, the Black Sea.