ОНТОГЕНЕЗ DROSOPHILA MELANOGASTER ЯК МІШЕНЬ НІКОТИНОВОЇ ТОКСИЧНОСТІ. ПОВІДОМЛЕННЯ І
DOI:
https://doi.org/10.18524/2077-1746.2025.1(56).337318Ключові слова:
Drosophila melanogaster, нікобустер, нікотин, розвиток, політенні хромосоми, плодючість, фітнес, токсичний стресАнотація
У роботі досліджено вплив нікобустера для електронних сигарет на розвиток Drosophila melanogaster при пероральному введенні. Показано, що нікотин зумовлює дозозалежну затримку метаморфозу, зниження виживаності та плодючості. Водночас виявлено підвищення ступеня політенізації ядер клітин слинних залоз личинок, що може свідчити про активацію компенсаторних механізмів у відповідь на токсичний стрес. Отримані результати вказують на личинку як критичну мішень дії нікотину та підкреслюють мультифакторний характер його впливу на розвиток D. melanogaster.
Посилання
Alieksieieva, T. G., Sheren, A. V. & Bilokon, S. V. (2020). Otsinka vplyvu kharchovykh barvnykiv na Drosophila melanogaster Meigh [Assessment of influence of food dyes on Drosophila melanogaster Meigh]. Odesa National University Herald. Biology, 25(1(46)), 55–66. https://doi.org/10.18524/2077-1746.2020.1(46).205811 [in Ukrainian].
Atramentova, L. A., & Utevska, O. M. (2007). Statystychni metody v biolohii [Statistical methods in Biology] (288 p.). Kharkiv: KhNU imeni V. N. Karazina. [in Ukrainian].
Alieksieieva, T. G., & Bilokon S. V. Politenni khromosomy Drosophila melanogaster [Polytene chromosomes of Drosophila melanogaster] (58 p.). Odesa: Odesa I. I. Mechnikov National University. [in Ukrainian].
Skorobagatko, D. A., Strashnyuk, V. Yu., & Mazilov, A. A. (2015). Komponenty prisposoblennosti v potomstve Drosophila melanogaster Meig. posle ostrogo γ-oblucheniya [Fitness components in the offsprings of Drosophila melanogaster Meig. after acute γ-Irradiation]. Factors in Experimental Evolution of Organisms, 16, 78–82. [in Russian].
Almeida Machado Costa, C., Wang, X. F., Ellsworth, C., & Deng, W. M. (2022). Polyploidy in development and tumor models in Drosophila. Seminars in Cancer Biology, 81, 106–118. https://doi.org/10.1016/j.semcancer.2021.09.011
Aizono, Y., Endo, Y., Sattelle, D. B., & Shirai, Y. (1997). Prothoracicotropic hormone-producing neurosecretory cells in the silkworm Bombyx mori, express a muscarinic acetylcholine receptor. Brain Res., 763, 131–136. https://doi.org/10. 1016/s0006-8993(97)00496-4
Bailey, E. C., Kobielski, S., Park, J., & Losick, V. P. (2021). Polyploidy in tissue repair and regeneration. Cold Spring Harbor Perspectives in Biology, 13(10), a040881. https://doi.org/10.1101/cshperspect.a040881
Bainton, R. J., Tsai, L. T., Singh, C. M., Moore, M. S., Neckameyer, W. S., & Heberlein, U. (2000). Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Current Biology, 10(4), 187–194. https://doi.org/10.1016/s0960-9822(00)00336-5
Baumann, A. A., Texada, M. J., Chen, H. M., Etheredge J. N., Miller D. L., Picard S., Warner R., Truman J. W., & Riddiford L. M. (2017). Genetic tools to study juvenile hormone action in Drosophila. Sci Rep., 7, 2132. https://doi.org/10.1038/s41598-017-02264-4
Beckstead, R. B., Lam, G., & Thummel, C. S. (2007). Specific transcriptional responses to juvenile hormone and ecdysone in Drosophila. Insect Biochemistry and Molecular Biology, 37(6), 570–578. https://doi.org/10.1016/j.ibmb.2007.03.001
Britton, J. S., & Edgar, B. A. (1998). Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development, 125(11), 2149–2158. https://doi.org/10.1242/dev.125.11.2149
Cai, M. J., Liu, W., Pei, X. Y., Li, X. R., He, H. J., Wang, J. X., & Zhao, X. F. (2014). Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein. Journal of Biological Chemistry, 289(38), 26630–26641. https://doi.org/10.1074/jbc.M114.581876
Celniker, S. E., Dillon, L. A., Gerstein, M. B., Gunsalus, K. C., Henikoff, S., Karpen, G. H., Kellis, M., Lai, E. C., Lieb, J. D., MacAlpine, D. M., Micklem, G., Piano, F., Snyder, M., Stein, L., White, K. P., Waterston, R. H., & modENCODE Consortium (2009). Unlocking the secrets of the genome. Nature, 459(7249), 927–930. https://doi.org/10.1038/459927a
Chien, S., Reiter, L. T., Bier, E., & Gribskov, M. (2002). Homophila: human disease gene cognates in Drosophila. Nucleic Acids Research, 30(1), 149–151. https://doi.org/10.1093/nar/30.1.149
Chintapalli, V. R., Wang, J., & Dow, J. A. (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genetics, 39(6), 715–720. https://doi.org/10.1038/ng2049
Cornelius, M. D., & Day, N. L. (2009). Developmental consequences of prenatal tobacco exposure. Current Opinion in Neurology, 22(2), 121–125. https://doi.org/10.1097/WCO.0b013e328326f6dc
Deng, W. M., Althauser, C., & Ruohola-Baker, H. (2001). Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells. Development, 128(23), 4737–4746. https://doi.org/10.1242/dev.128.23.4737
Denver, R. J. (1997). Environmental stress as a developmental cue: corticotropin releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav., 31, 169–179. https://doi.org/10.1006/hbeh.1997.1383
Deveci, D., Martin, F. A., Leopold, P., & Romero, N. M. (2019). AstA signaling functions as an evolutionary conserved mechanism timing juvenile to adult transition. Curr. Biol., 29, 813.e–822.e. https://doi.org/10.1016/j.cub.2019.01.053
Dubrovsky, E. B. (2005). Hormonal cross talk in insect development. Trends in Endocrinology and Metabolism, 16(1), 6–11. https://doi.org/10.1016/j.tem.2004.11.003
Dupuis, J., Louis, T., Gauthier, M., & Raymond, V. (2012). Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neuroscience and Biobehavioral Reviews, 36(6), 1553–1564. https://doi.org/10.1016/j.neubiorev.2012.04.003
Dyka, L. D., Shakina, L. A., Strashnyuk, V. Y., & Shckorbatov, Y. G. (2016). Effects of 36.6 GHz and static magnetic field on degree of endoreduplication in Drosophila melanogaster polytene chromosomes. International Journal of Radiation Biology, 92(4), 222–227. https://doi.org/10.3109/09553002.2016.1137105
Edgar, B. A., & Orr-Weaver, T. L. (2001). Endoreplication cell cycles: more for less. Cell, 105(3), 297–306. https://doi.org/10.1016/s0092-8674(01)00334-8
Edgar, B. A., Zielke, N., & Gutierrez, C. (2014). Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nature Reviews. Molecular Cell Biology, 15(3), 197–210. https://doi.org/10.1038/nrm3756
El-Merhie, N., Krüger, A., Uliczka, K., Papenmeier, S., Roeder, T., Rabe, K.F., Wagner, C., Angstmann, H., & Krauss-Etschmann, S. (2021). Sex dependent effect of maternal e-nicotine on F1 Drosophila development and airways. Sci Rep., 11(1), 4441. https://doi.org/10.1038/s41598-021-81607-8
Fayyazuddin, A., Zaheer, M. A., Hiesinger, P. R., & Bellen, H. J. (2006). The nicotinic acetylcholine receptor Dalpha7 is required for an escape behavior in Drosophila. PLoS Biology, 4(3), e63. https://doi.org/10.1371/journal.pbio.0040063
Fráková V., Koprivý L., Paľová M., Kolarčik V., & Mártonfi P. (2021). Evaluation of endopolyploidy patterns in selected Capsicum and Nicotiana species (Solanaceae). Biologia, 76, 2079–2092. https://doi.org/10.1007/s11756-021-00704-1
Fox, D. T., & Duronio, R. J. (2013). Endoreplication and polyploidy: insights into development and disease. Development, 140(1), 3–12. https://doi.org/10.1242/dev.080531
Fuenzalida-Uribe, N., Meza, R. C., Hoffmann, H. A., Varas, R., & Campusano, J. M. (2013). nAChR-induced octopamine release mediates the effect of nicotine on a startle response in Drosophila melanogaster. Journal of Neurochemistry, 125(2), 281–290. https://doi.org/10.1111/jnc.12161
Gilbert, L.I., & Goodman, W. (1981). Chemistry, metabolism, and transport of hormones controlling insect metamorphosis. In: L. I. Gilbert, & E. Frieden (Eds.), Metamorphosis. Boston, MA: Springer. https://doi.org/10.1007/978-1-4613-3246-6_5
Gotthard, K., & Nylin, S. (1995). Adaptive plasticity and plasticity as an adaptation: a selective review of plasticity in animal morphology and life history. Oikos, 74, 3–17. https://doi.org/10.2307/3545669
Gramates, L. S., Marygold, S. J., Santos, G. D., Urbano, J. M., Antonazzo, G., Matthews, B. B., Rey, A. J., Tabone, C. J., Crosby, M. A., Emmert, D. B., Falls, K., Goodman, J. L., Hu, Y., Ponting, L., Schroeder, A. J., Strelets, V. B., Thurmond, J., Zhou, P., & the FlyBase Consortium (2017). FlyBase at 25: looking to the future. Nucleic Acids Research, 45(D1), D663–D671. https://doi.org/10.1093/nar/gkw1016
Grauso, M., Reenan, R. A., Culetto, E., & Sattelle, D. B. (2002). Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing. Genetics, 160(4), 1519–1533. https://doi.org/10.1093/genetics/160.4.1519
Grillo, M., Furriols, M., de Miguel, C., Franch-Marro, X., & Casanova, J. (2012). Conserved and divergent elements in Torso RTK activation in Drosophila development. Sci. Rep., 2, 762. https://doi.org/10.1038/srep00762
Gruntenko, N. E., Karpova, E. K., Adonyeva, N. V., Chentsova, N. A., Faddeeva, N. V., Alekseev, A. A., & Rauschenbach, I. Y. (2005). Juvenile hormone, 20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. Journal of Insect Physiology, 51(4), 417–425. https://doi.org/10.1016/j.jinsphys.2005.01.007
Gruntenko, N. E., Karpova, E. K., Alekseev, A. A., Chentsova, N. A., Saprykina, Z. V., Bownes, M., & Rauschenbach, I. Y. (2005). Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. Journal of Insect Physiology, 51(9), 959–968. https://doi.org/10.1016/j.jinsphys.2005.04.010
Huang, X., Warren, J. T., & Gilbert, L. I. (2008). New players in the regulation of ecdysone biosynthesis. Journal of Genetics and Genomics, 35(1), 1–10. https://doi.org/10.1016/S1673-8527(08)60001-6
Imura, E., Shimada-Niwa, Y., Nishimura, T., Hückesfeld, S., Schlegel, P., Ohhara, Y., Kondo, S., Tanimoto, H., Cardona, A., Pankratz, M. J., & Niwa, R. (2020). The Corazonin-PTTH neuronal axis controls systemic body growth by regulating basal ecdysteroid biosynthesis in Drosophila melanogaster. Current Biology, 30(11), 2156.e–2165.e. https://doi.org/10.1016/j.cub.2020.03.050
Jindra, M., Palli, S. R., & Riddiford, L. M. (2013). The juvenile hormone signaling pathway in insect development. Annual Review of Entomology, 58, 181–204. https://doi.org/10.1146/annurev-ento-120811-153700
Kaun, K. R., Devineni, A. V. & Heberlein, U. (2012). Drosophila melanogaster as a model to study drug addiction. Hum. Genet., 131, 959–975 https://doi.org/10.1007/s00439-012-1146-6
Kawakami, A., Kataoka, H., Oka, T., Mizoguchi, A., Kimura-Kawakami, M., Adachi, T., Iwami, M., Nagasawa, H., Suzuki, A., & Ishizaki, H. (1990). Molecular cloning of the Bombyx mori prothoracicotropic hormone. Science, 247(4948), 1333–1335. https://doi.org/10.1126/science.2315701
Kayukawa, T., Nagamine, K., Ito, Y., Nishita, Y., Ishikawa, Y., & Shinoda, T. (2016). Krüppel homolog 1 inhibits insect metamorphosis via direct transcriptional repression of broad-complex, a pupal specifier gene. Journal of Biological Chemistry, 291(4), 1751–1762. https://doi.org/10.1074/jbc.M115.686121
King, I., Tsai, L. T., Pflanz, R., Voigt, A., Lee, S., Jäckle, H., Lu, B., & Heberlein, U. (2011). Drosophila tao controls mushroom body development and ethanol-stimulated behavior through par-1. Journal of Neuroscience, 31(3), 1139–1148. https://doi.org/10.1523/JNEUROSCI.4416-10.2011
Larkins, B. A, Dilkes, B. P., Dante, R. A,, Coelho C. M., Woo, Y., & Liu, Y. (2001). Investigating hows and whys of DNA endoreduplication. J Exp Bot., 52, 183–194. https://doi.org/10.1093/jexbot/52.355.183
Lessells, C. K. (2008). Neuroendocrine control of life histories: what do we need to know to understand the evolution of phenotypic plasticity? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1497), 1589–1598. https://doi.org/10.1098/rstb.2007.0008
Leitch, A. R., & Leitch, I. J. (2022). Genome evolution: on the nature of trade-offs with polyploidy and endopolyploidy. Curr. Biol., 32, 952–954. https://doi.org/10.1016/j.cub.2022.08.012
Li, T. R., & White, K. P. (2003). Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Developmental Cell, 5(1), 59–72. https://doi.org/10.1016/s1534-5807(03)00192-8
Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nature Reviews. Neuroscience, 11(10), 710–718. https://doi.org/10.1038/nrn2914
Liu, Z., & Huang, X. (2013). Lipid metabolism in Drosophila: development and disease. Acta Biochimica et Biophysica Sinica, 45(1), 44–50. https://doi.org/10.1093/abbs/gms105
Losick, V. P., Fox, D. T., & Spradling, A. C. (2013). Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Current Biology, 23(22), 2224–2232. https://doi.org/10.1016/j.cub.2013.09.029
Marguerat, S., & Bähler, J. (2012). Coordinating genome expression with cell size. Trends in Genetics, 28(11), 560–565. https://doi.org/10.1016/j.tig.2012.07.003
McBrayer, Z., Ono, H., Shimell, M., Parvy, J. P., Beckstead, R. B., Warren, J. T., Thummel, C. S., Dauphin-Villemant, C., Gilbert, L. I., & O’Connor, M. B. (2007). Prothoracicotropic hormone regulates developmental timing and body size in Drosophila. Developmental Cell, 13(6), 857–871. https://doi.org/10.1016/j.devcel.2007.11.003
Mehrotra, S., Maqbool, S. B., Kolpakas, A., Murnen, K., & Calvi, B. R. (2008). Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes & Development, 22(22), 3158–3171. https://doi.org/10.1101/gad.1710208
Mirth, C. K., Tang, H. Y., Makohon-Moore, S. C., Salhadar, S., Gokhale, R. H., Warner, R. D., Koyama, T., Riddiford, L. M., & Shingleton, A. W. (2014). Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 111(19), 7018–7023. https://doi.org/10.1073/pnas.1313058111
Mizoguchi, A., Dedos, S. G., Fugo, H., & Kataoka, H. (2002). Basic pattern of fluctuation in hemolymph PTTH titers during larval-pupal and pupal-adult development of the silkworm Bombyx mori. General and Comparative Endocrinology, 127(2), 181–189. https://doi.org/10.1016/s0016-6480(02)00043-6
Morris, M., Shaw, A., Lambert, M., Perry, H. H., Lowenstein, E., Valenzuela, D., & Velazquez-Ulloa, N. A. (2018). Developmental nicotine exposure affects larval brain size and the adult dopaminergic system of Drosophila melanogaster. BMC Developmental Biology, 18(1), 13. https://doi.org/10.1186/s12861-018-0172-6
Nässel, D. R., & Zandawala, M. (2020). Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell and Tissue Research, 382(2), 233–266. https://doi.org/10.1007/s00441-020-03264-z
Nesterkina M., Bilokon S., Alieksieieva T., Chubyk I., & Kravchenko I. (2018). The influence of monoterpenoids and phenol derivatives on Drosophila melanogaster viability. Journal of Asia-Pacific Entomology, 21(3), 793796. https://doi.org/10.1016/j.aspen.2018.06.004
Nesterkina, M., Bilokon, S., Alieksieieva, T., Chebotar, S., & Kravchenko, I. (2020). Toxic effect and genotoxicity of carvacrol ethers in Drosophila melanogaster. Mutation Research, 821, 111713. https://doi.org/10.1016/j.mrfmmm.2020.111713
Noguchi, H., & Hayakawa, Y. (1997). Role of dopamine at the onset of pupal diapause in the cabbage armyworm Mamestra brassicae. FEBS Letters, 413(1), 157–161. https://doi.org/10.1016/s0014-5793(97)00848-x
Omelchenko, N., Roy, P., Balcita-Pedicino, J. J., Poloyac, S., & Sesack, S. R. (2016). Impact of prenatal nicotine on the structure of midbrain dopamine regions in the rat. Brain Structure & Function, 221(4), 1939–1953. https://doi.org/10.1007/s00429-015-1014-y
Oncken, C., Ricci, K. A., Kuo, C. L., Dornelas, E., Kranzler, H. R., & Sankey, H. Z. (2017). Correlates of electronic cigarettes use before and during pregnancy. Nicotine & Tobacco Research, 19(5), 585–590. https://doi.org/10.1093/ntr/ntw225
Pauly, J. R., Sparks, J. A., Hauser, K. F., & Pauly, T. H. (2004). In utero nicotine exposure causes persistent, gender-dependant changes in locomotor activity and sensitivity to nicotine in C57Bl/6 mice. International Journal of Developmental Neuroscience, 22(5-6), 329–337. https://doi.org/10.1016/j.ijdevneu.2004.05.009
Rauschenbach, I. Y., Chentsova, N. A., Alekseev, A. A., Gruntenko, N. E., Adonyeva, N. V., Karpova, E. K., Komarova, T. N., Vasiliev, V. G., & Bownes, M. (2007). Dopamine and octopamine regulate 20-hydroxyecdysone level in vivo in Drosophila. Archives of Insect Biochemistry and Physiology, 65(2), 95–102. https://doi.org/10.1002/arch.20183
Ren, D., Song, J., Ni, M., Kang, L., & Guo, W. (2020). Regulatory mechanisms of cell polyploidy in insects. Frontiers in Cell and Developmental Biology, 8, 361. https://doi.org/10.3389/fcell.2020.00361
Ren, J., Sun, J., Zhang, Y., Liu, T., Ren, Q., Li, Y., & Guo, A. (2012). Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila. PloS One, 7(12), e52521. https://doi.org/10.1371/journal.pone.0052521
Rewitz, K. F., Yamanaka, N., Gilbert, L. I., & O’Connor, M. B. (2009). The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorphosis. Science, 326(5958), 1403–1405. https://doi.org/10.1126/science.1176450
Rimal, S., & Lee, Y. (2019). Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochemistry and Molecular Biology, 111, 103178. https://doi.org/10.1016/j.ibmb.2019.103178
Rodman, T. C. (1967). DNA replication in salivary gland nuclei of Drosophila melanogaster at successive larval and prepupal stages. Genetics, 55(3), 375–386. https://doi.org/10.1093/genetics/55.3.375
Rockwell, A. L., Beaver, I., & Hongay, C. F. (2019). A direct and simple method to assess Drosophila melanogaster’s viability from embryo to adult. Journal of Visualized Experiments, (150). https://doi.org/10.3791/59996.https://doi.org/10.3791/59996
Rothenfluh, A., Threlkeld, R. J., Bainton, R. J., Tsai, L. T., Lasek, A. W., & Heberlein, U. (2006). Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell, 127(1), 199–211. https://doi.org/10.1016/j.cell.2006.09.010
Roy, T. S., Seidler, F. J., & Slotkin, T. A. (2002). Prenatal nicotine exposure evokes alterations of cell structure in hippocampus and somatosensory cortex. Journal of Pharmacology and Experimental Therapeutics, 300(1), 124–133. https://doi.org/10.1124/jpet.300.1.124
Sanchez-Díaz, I., Rosales-Bravo, F., Reyes-Taboada, J. L., Covarrubias, A. A., Narvaez-Padilla, V., & Reynaud, E. (2015). The esg gene is involved in nicotine sensitivity in Drosophila melanogaster. PloS One, 10(7), e0133956. https://doi.org/10.1371/journal.pone.0133956
Santiago, S. E., & Huffman, K. J. (2012). Postnatal effects of prenatal nicotine exposure on body weight, brain size and cortical connectivity in mice. Neuroscience Research, 73(4), 282–291. https://doi.org/10.1016/j.neures.2012.05.005
Shakina L. A., & Strashnyuk V. Yu. (2011). Genetic, molecular, and humoral endocycle-regulating mechanisms. Russ. J. Genet., 47, 1151–1160.
Shcherbata, H. R., Althauser, C., Findley, S. D., & Ruohola-Baker, H. (2004). The mitotic-to-endocycle switch in Drosophila follicle cells is executed by Notch-dependent regulation of G1/S, G2/M and M/G1 cell-cycle transitions. Development, 131(13), 3169–3181. https://doi.org/10.1242/dev.01172
Shimell, M., Pan, X., Martin, F. A., Ghosh, A. C., Leopold, P., O’Connor, M. B., & Romero, N. M. (2018). Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development, 145(6), dev159699. https://doi.org/10.1242/dev.159699
Skorobagatko, D. A., Mazilov, A. A. & Strashnyuk, V. Y. (2020). Endoreduplication in Drosophila melanogaster progeny after exposure to acute γ-irradiation. Radiat. Environ. Biophys., 59, 211–220. https://doi.org/10.1007/s00411-019-00828-8
Slotkin, T. A. (2004). Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicology and Applied Pharmacology, 198(2), 132–151. https://doi.org/10.1016/j.taap.2003.06.001
Smith, A. M., Dwoskin, L. P., & Pauly, J. R. (2010). Early exposure to nicotine during critical periods of brain development: mechanisms and consequences. Journal of Pediatric Biochemistry, 1(2), 125–141. https://doi.org/10.3233/JPB-2010-0012
Smykal, V., Daimon, T., Kayukawa, T., Takaki, K., Shinoda, T., & Jindra, M. (2014). Importance of juvenile hormone signaling arises with competence of insect larvae to metamorphose. Developmental Biology, 390(2), 221–230. https://doi.org/10.1016/j.ydbio.2014.03.006
Strashniuk, V. Iu, Al’-Khamed, S., Nepeĭvoda, S. N., & Shakhbazov, V. G. (1997). Cytogenetic and cytobiophysical study of temperature adaptation and heterosis mechanisms in Drosophila melanogaster Meig. Genetika, 33(6), 793–799.
Strashnyuk, V. Y., Shakina, L. A., & Skorobagatko, D. A. (2023). Variability of polyteny of giant chromosomes in Drosophila melanogaster salivary glands. Genetica, 151(1), 75–86. https://doi.org/10.1007/s10709-022-00168-4
Strashnyuk, V., Vakulenko, E., & Koptevtsova, Y. (2025). Seasonal variation in endoreduplication and polyteny in the fruit fly Drosophila melanogaster (Diptera: Drosophilidae): how does it contribute to adaptation? EJE, 122, 1-10. https://doi.org/10.14411/eje.2025.001
Texada, M. J., Lassen, M., Pedersen, L. H., Koyama, T., Malita, A., & Rewitz, K. (2022). Insulin signaling couples growth and early maturation to cholesterol intake in Drosophila. Current Biology, 32(7), 1548–1562.e6. https://doi.org/10.1016/j.cub.2022.02.021
Thummel, C. S., & Chory, J. (2002). Steroid signaling in plants and insects--common themes, different pathways. Genes & Development, 16(24), 3113–3129. https://doi.org/10.1101/gad.1042102
Truman, J. W., & Riddiford, L. M. (1974). Physiology of insect rhythms. 3. The temporal organization of the endocrine events underlying pupation of the tobacco hornworm. Journal of Experimental Biology, 60(2), 371–382. https://doi.org/10.1242/jeb.60.2.371
Truman, J. W., & Riddiford, L. M. (2023). Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics, 223(3), iyac184. https://doi.org/10.1093/genetics/iyac184
Velazquez-Ulloa, N. A. (2017). A Drosophila model for developmental nicotine exposure. PloS One, 12(5), e0177710. https://doi.org/10.1371/journal.pone.0177710
Wagner, N. J., Camerota, M., & Propper, C. (2017). Prevalence and perceptions of electronic cigarette use during pregnancy. Maternal and Child Health Journal, 21(8), 1655–1661. https://doi.org/10.1007/s10995-016-2257-9
Wilson T. G. (2004). The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. Journal of Insect Physiology, 50(2-3), 111–121. https://doi.org/10.1016/j.jinsphys.2003.12.004
Wu, Z., Guo, W., Yang, L., He, Q., & Zhou, S. (2018). Juvenile hormone promotes locust fat body cell polyploidization and vitellogenesis by activating the transcription of Cdk6 and E2f1. Insect Biochemistry and Molecular Biology, 102, 1–10. https://doi.org/10.1016/j.ibmb.2018.09.002
Xiang, J., Bandura, J., Zhang, P., Jin, Y., Reuter, H., & Edgar, B. A. (2017). EGFR-dependent TOR-independent endocycles support Drosophila gut epithelial regeneration. Nature Communications, 8, 15125. https://doi.org/10.1038/ncomms15125
Yamamoto, S., Jaiswal, M., Charng, W. L., Gambin, T., Karaca, E., Mirzaa, G., Wiszniewski, W., Sandoval, H., Haelterman, N. A., Xiong, B., Zhang, K., Bayat, V., David, G., Li, T., Chen, K., Gala, U., Harel, T., Pehlivan, D., Penney, S., Vissers, L. E. L. M., … & Bellen, H. J. (2014). A Drosophila genetic resource of mutants to study mechanisms underlying human genetic diseases. Cell, 159(1), 200–214. https://doi.org/10.1016/j.cell.2014.09.002
Yamanaka, N., Rewitz, K. F., & O’Connor, M. B. (2013). Ecdysone control of developmental transitions: lessons from Drosophila research. Annual Review of Entomology, 58, 497–516. https://doi.org/10.1146/annurev-ento-120811-153608
Yamazaki T. (1984). Measurement of fitness and its components in six laboratory strains of Drosophila melanogaster. Genetics, 108(1), 201–211. https://doi.org/10.1093/genetics/108.1.201
Zhang, Y., Guo, J., Guo, A., & Li, Y. (2016). Nicotine-induced acute hyperactivity is mediated by dopaminergic system in a sexually dimorphic manner. Neuroscience, 332, 149–159. https://doi.org/10.1016/j.neuroscience.2016.06.043
Zhang, X., Li, S., & Liu, S. (2022). Juvenile hormone studies in Drosophila melanogaster. Frontiers in Physiology, 12, 785320. https://doi.org/10.3389/fphys.2021.785320
Zielke, N., Kim, K. J., Tran, V., Shibutani, S. T., Bravo, M. J., Nagarajan, S., van Straaten, M., Woods, B., von Dassow, G., Rottig, C., Lehner, C. F., Grewal, S. S., Duronio, R. J., & Edgar, B. A. (2011). Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature, 480 (7375), 123–127. https://doi.org/10.1038/nature10579
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) роботи, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).
Публікація праць в Журналі здійснюється на некомерційній основі. Комісійна плата за оформлення статті не стягується.